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  Abstract (10pt) 

 
 Addition is a fundamental operation for any digital system, digital signal 

processing or control system. A fast and accurate operation of a digital 
system is greatly influenced by the performance of the resident 
adders.Adders are also very important component in digital systems 
because of their extensive use in other basic digital operations such as 
subtraction, multiplication and division. Hence, improving performance 
of the digital  adder  would  greatly  advance  the  execution  of  binary  
operations  inside  a  circuit compromised of such blocks. The 
performance of a digital circuit block is gauged by analysingits power 
dissipation, layout area and its operating speed. As a result, the need 
for faster and efficient Adders in computers has been a topic of 
interest over decades.   

Binary adders are one of the most essential logic elements within a 
digital system. In addition, binary adders are also helpful in units 
other than Arithmetic Logic Units (ALU), such as multipliers, dividers 
and memory addressing. Therefore, binary addition is essential that 
any improvement in binary addition can result in a performance boost 
for any computing system and helps to improve the performance of 
the entire system.The major problem for binary addition is the carry 
chain. As the width of the input operand increases, the length of the 
carry chain increases. The binary adder is the critical element in most 
digital circuit designs including digital signal processors (DSP) and 
microprocessor data path units. As such, extensive research 
continues to be focused on improving the power delay performance 
of the adder. The basic idea of the proposed work is using various 
types of addersand compared to the adder with Binary to Excess 1 
converter (BEC) for high speed of addition by using the simulation 
through Verilog in Xilinx ISE. 
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1. Introduction 

In VLSI implementations, parallel-prefix adders are known to have the best performance. Reconfigurable logic 

such as Field Programmable Gate Arrays (FPGAs) has been gaining in popularity in recent years because it 

offers improved performance in terms of speed and power over DSP-based and microprocessor-based 

solutions for many practical designs involving mobile DSP and telecommunications applications and a 

significant reduction indevelopment time and cost over Application Specific Integrated Circuit (ASIC) 

designs[1]. 

However, because of the structure of the configurable logic and routing resources in FPGAs, parallel-prefix 

adders will have a different performance than VLSI implementations. In particular, most modern FPGAs 

employ a fast-carry chain which optimizes the carry path for the Binary to Excess-1 Converters (BEC). In this 

project, the practical issues involved in designing and implementing tree-based adders on FPGAs are 

described. 

Several tree-based adder structures are implemented and compared. Finally, some conclusions and 

suggestions for improving FPGA designs to enable better tree-based adder performance are given. The main 

challenging areas in VLSI are performance, cost, testing, area, reliability and power [2]. The demand for 

portable computing devices and communications system are increasing rapidly. These applications require 

high speed VLSI circuits. Hence it is important aspect to optimize speed. So these optimizations became main 

challenge in the chip designing field. 

Parallel-prefix adders, also known as carry-tree adders, pre-compute thepropagate and generate signals. 

These signals are variously combined using the fundamental carry operator (fco). 

(gL, pL) ο (gR, pR) = (gL+ pL•gR, pL• pR)  (1) 

Due to associative property of the fco, these operators can be combined in different ways to form various 

adder structures. For, example the four-bit carry look-ahead generator is given by 

  c4= (g4, p4) o [(g3, p3) ο [(g2, p2) ο (g1, p1)]] (2) 

A simple rearrangement of the order of operations allows parallel operation, resulting in a more efficient tree 

structure for this four bit example is 

c4= [(g4, p4) ο (g3, p3)] ο [(g2, p2) ο (g1, p1)] (3) 

It is readily apparent that a key advantage of the tree structured adder is that the critical path due to the 

carry delay is on the order of log2N for an N-bit wide adder. The arrangement of the prefix network gives rise 

to various families of adders. Here BC is designated as the black cell which generates the ordered pair in 

equation (1); the gray cell (GC) generates the left signal only. The interconnect area is known to be high, but 

for an FPGA with large routing overhead to begin with, this is not as important as in a VLSI implementation. 

The regularity of the Kogge-Stone prefix network has built in redundancy which has implications for fault-

tolerant designs. This hybrid design completes the summation process with a 4-bit RCA allowing the carry 

prefix network to be simplified [4,5]. Parallel prefix adders allow more efficient implementations of the carry 

http://www.ijesm.co.in/
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look-ahead technique and are essentially, variants of carry look-ahead adders. Indeed, in current technology, 

parallel prefix adders are among the best adders, with respect to area and time is particularly suited for high 

speed addition of large numbers. 

In these parallel prefix adders, mainly two types of Generate and Propagate bits are present. Generate and 

Propagate concept is extendable to blocks comprising multiple bits. For each bit i ofthe adder, Generate (Gi) 

indicates whether a carry is generated from that bit and 

Gi= ai&bi   (4) 

For each bit i of the adder, Propagate (Pi) indicates whether a carry is propagated through that bit 

Pi = aibi   (5) 

2. Structure of the parallel prefix adders: 

A parallel prefix adder employs 3-stage structure of carry look-ahead adder. The improvement is that the 

carry generation stage which is the most intensive one. The Fig 1 shows the structure of ling adder. The ling 

adder uses predetermined propagate and generate in 1st stage of design. The 2nd stage is parallelizable to 

reduce time by calculating carries. The 3rd stage is the simple adder block to calculate the sum. 

 

 

Fig 1 Parallel prefix adder structure 

 

 

 

Processing component structure: 
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In order to achieve the tree operation for the parallel prefix adders, processing component structure is 

needed. Where it takes the Pin, Gin as the inputs and processes them to the other Pout and Gout outputs. Here 

one of it is to the next stage and another one to the continuous process. Fig 2 shows the processing 

component structure. 

 

Fig 2 Processing component structure 

 

The parallel prefix graph for representation of prefix addition is shown in Fig 3. 

 

Fig 3:  Parallel prefix adder structure 

 

3. DIFFERENT TYPES OF PARALLEL PREFIX ADDERS 

Some of the parallel prefix adders are[3]: 

➢ Kogge-Stone adder 

http://www.ijesm.co.in/
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➢ Ladner-Fischer adder 

➢ Spanning Tree adder 

➢ Sparse Kogge-Stone adder 

 

3.1 Kogge-Stone adder: 

The Kogge-Stone adder is a parallel prefix form carry look-ahead adder. It generates the carry signals in O(log 

n) time, and is widely considered the fastest adder design possible. It is the common design for high-

performance adders in industry. Kogge-Stone prefix tree is among the type of prefix trees that use the fewest 

logic levels. In fact, Kogge-Stone is a member of Knowles prefix tree. The 16-bit prefix tree can be viewed as 

Knowles. The maximum fan-out is 2 in all logic levels for all width Kogge-Stone prefix trees. The key of building 

a prefix tree is how to implement equation according to the specific features of particular type of prefix tree 

and apply the rules described in the previous section. Gray cells are inserted similar to black cells except that 

the gray cells final output carry outs instead of intermediate Generate/Propagate group. 

The reason of starting with Kogge-Stone prefix tree is that it is the easiest to build in terms of using a program 

concept. Enhancements to the original implementation include increasing the radix and sparsity of the adder. 

The radix of the adder refers to how many results from the previous level of computation are used to generate 

the next one. The original implementation uses radix-2, although it is possible to create radix-4 and higher. 

Doing so increases the power and delay of each stage, but reduces the number of required stages. 

The sparsity of the adder refers to how many carry bits are generated by the carry-tree. Generating every 

carry bit is called sparsity-1, whereas generating every other is sparsity-2 and every fourth is sparsity-4. The 

resulting output carry bits are then used as the carry-in inputs for much shorter ripple carry adders or some 

other adder design, which generates the final sum bits. The Kogge-Stone adder is a classic prefix structure 

that reaches minimal depth of log n. However, it utilizes a different idea instead of half-half bipartition. In 

each level l, The Kogge-Stone adder constructs all (G; P) says wide as possible hence any (G; P) with width 

equal to or smaller than 2lwill be achieved. After log n levels, the prefix structure generates all needed 

outputs. One shortage of the Kogge stone adder is a large area overhead, which is n (log 2n -1) +1. 

It comes from the extremely greedy algorithm. The algorithm can be understood as calculating (G; P)sfor 

every bit position separately, and no share between them. However, a positive effect is that the fan-out of 

each node is limited to 2. In contrast, the max fan-out increases exponentially in half-half bipartition 

algorithms. In practice, Kogge-Stone adder is considered as the fastest regular prefix adder. However, regular 

structure cannot handle non-uniform input arrival times or output required times. In this case, irregular 

structure can be produced by manipulating a prefix structure with local operations 

The number of majority gates required for an n-bit Kogge–Stone adder is given by 

I(n) = n(3 log2n-1) + 5                    (6) 

http://www.ijesm.co.in/
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The computation of carries of an n-bit Kogge–Stone adder requires log2 n stages. The number of majority 

gates required for an n-bit Kogge–Stone adder is also obtained via a recursive formulation. The general 

formula for calculating the number of majority gates for carries from
𝑛

2
 +1 to nis obtained as follows: 

Each stage in the Kogge-Stone adder requires
𝑛

2 
associative operations (namely carries from 

𝑛

2
 +1 to n). Except 

the last stage, each associative operator in all other stages requires three majority gates. In the last stage, 

each associative operation requires only two majority gates (since there is no calculation of the propagate 

term): 
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  = 3𝑛𝑙𝑜𝑔2 𝑛 − 4𝑛 + 4 

This will have a reduction of one majority gate each and a total of  
𝑛

2
 majority gates: 

𝐼𝑟(𝑛) =  
𝑛

2
+ 𝐼𝑟 (

𝑛

2
) 

 = 𝑛 − 1      

Hence,𝐼𝑐(𝑛)is given as 

𝐼𝑐(𝑛) = 𝐼𝑐
𝑑(𝑛) − 𝐼𝑟(𝑛) 

                           = 3𝑛𝑙𝑜𝑔2𝑛 − 5𝑛 − 5(7)   

The number of cells required for the Kogge stone adders are more so, in order to achieve same addition 

operation with less cells is presented in Ladner-Fischer adder and its working principle is discussed. 

3.2 Ladner-Fischer adder: 

In 1980, Fischer and Richard Ladner presented a parallel algorithm for computing prefix sums efficiently. They 

show how to construct a circuit that computes the prefix sums in the circuit; each node performs an addition 

of two numbers. With their construction, one can choose a trade-off between the circuit depth and the 

number of nodes. 

http://www.ijesm.co.in/
http://en.wikipedia.org/wiki/Parallel_algorithm
http://en.wikipedia.org/wiki/Prefix_sum


 ISSN: 2320-0294Impact Factor: 6.765  

863 International Journal of Engineering, Science and Mathematics 

http://www.ijesm.co.in, Email: ijesmj@gmail.com 

 

Ladner and Fischer defined the prefix problem as: Let “o” be an associative operation on n inputs x1,…..,xn, to 

compute each of products x1ox2o….oxk,1 ≤ k≤n. In the application of binary addition, the input of prefix 

computation is a group of binary vectors with two domains gi(generate) and pi(propagate): 

➢ 𝑔𝑖 = {
𝑐𝑜,         𝑖𝑓 𝑖 = 0
𝑎𝑖𝑏𝑖,   𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒

       (8)  

➢ 𝑝𝑖 = {
0,                𝑖𝑓 𝑖 = 0

𝑎𝑖 ⊕  𝑏𝑖,    𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒
      (9)  

If giequals 1, a carry is generated at bit i; otherwise if pi equals 1, a carry is propagated through bit i. By 

prefix computation, the concept of generate and propagate can be extended to multiple bits. We define 

G[i: k] and P[i: k] (i≥ k) as: 

𝐺[𝑖:𝑘] = {
𝑔

𝑖
                                          𝑖𝑓 𝑖 = 𝑘

𝐺[𝑖:𝑘]+ 𝑃[𝑖:𝑘]𝐺[𝑗−1:𝑘],   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

      (10) 

𝑃[𝑖:𝑘] = {
𝑝

𝑖
                        𝑖𝑓 𝑖 = 𝑘

𝑃[𝑖:𝑗]. 𝑃[𝑗−1:𝑘],   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(11) 

To simplify the representation, we continue to use the same operator to denote the prefix computation on 

(G; P): 

(G; P)[i:k] = (G; P) [i:j]o(G; P)[j-1:k](12) 

The width of the (G; P) term is calculated by i-k + 1. For final outputs, SiandCicanbe generated from GandP: 

Ci= G[i:0]   (13) 

Si= pi     ci-1 (14) 

Since pre-processing and post-processing have constant delay, prefix computation becomes the core of prefix 

adders and dominates the performance. A visual representation of prefix computation structures is to use 

directed acyclic graphs. For (G; P) computation in binary addition problem, it has two important properties: 

Property 1: (G; P) computation is associative. That is 

(G; P)[i:k] = (G; P)[i:j] o (G; P)[j-1:k] 

= (G; P)[i:l] o(G; P)[l-1:k]; i ≥ l; j > k        (15) 

Property 2: (G; P) computation is idempotent. That is 

(G; P)[i:k] = (G; P)[i:j] o(G; P)[j-1:k] 

 = (G; P)[i:j] o(G; P)[l:k]; i ≥ l > j- 1 ≥ k 

       (16) 

These two properties limit the design space of parallel prefix adders. That is the solution space of (G; P) 

computation covers every tree-like structures defined under bit width n. 

http://www.ijesm.co.in/
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However, the same circuit designs were already studied much earlier in Sovietmathematics. This also has 

O(log2n) stages. Its prefix graph is shown in Fig 3.9.The Ladner Fischer Parallel Prefix Adder (LFPPA) is 

presented graphically represents the connection of carry operator node in LFPPA for the case of n = 8. The 

number of majority gates required for an n-bit Ladner–Fischer adder is given by 

𝐼(𝑛) =
𝑛

2
(3𝑙𝑜𝑔2𝑛 + 4) + 2            (17) 

The direct calculation of the carries, 𝐼𝑐
𝑑denoted by is given by 

𝐼𝑐
𝑑  =  

𝑛

4
[3𝑙𝑜𝑔

2
𝑛 + 1] + 𝐼𝑐

𝑑 (
𝑛

2
) 

     =
3

2
[
𝑛

2
𝑙𝑜𝑔2𝑛 +

𝑛

4
𝑙𝑜𝑔2

𝑛

2
+ ⋯ + 2.2] − [

𝑛

4
+

𝑛

8
+ ⋯ + 2 + 1] + 𝐼𝑐

𝑑(2) 

=
3

2
[2𝑛𝑙𝑜𝑔2𝑛 − (𝑙𝑜𝑔2𝑛 + 1)𝑛] −                                     [𝑛 − 2] + 2 

=
3

2
𝑛𝑙𝑜𝑔2𝑛 − 𝑛 + 1       (18) 

Here associative operations are applied in stage 1and stage log2n. This leads to a reduction of majority gates, 

denoted Ir(n), given by 

𝐼𝑟(𝑛) =
𝑛

2
+ 𝐼𝑟 (

𝑛

2
) = 𝑛 − 1 

𝐼𝑐(𝑛) = 𝐼𝑐
𝑑(𝑛) − 𝐼𝑟(𝑛) 

                           =
3

2
𝑛𝑙𝑜𝑔2𝑛 − 2𝑛 + 2      (19) 

The overall majority gate requirement is given by 

𝐼(𝑛) = 𝐼𝑐(𝑛) + 𝐼𝑔𝑝(𝑛) + 𝐼𝑠(𝑛) 

                  =
𝑛

2
(3𝑙𝑜𝑔2𝑛 + 4) + 2    (20) 

Ladner and Fischer’s method not only provides a possible way to achieve minimal depth, but also establishes 

a depth-area trade-off for the first time. The upper bound of area is: 

𝐴𝑝𝑐(𝑛) < 2 (1 +  
1

2𝑛) 𝑛 − 2, 𝑛 ≥ 1        (21) 

While Ladner-Fischer adder is better than the Kogge stone adder in terms of number of cells, Spanning Tree 

adder’s delay performance is better than this Ladner-Fischer adder. 

3.3 Spanning Tree adder: 

Spanning tree adders is an existing category of adders. Basically, the performances of adders are evaluated 

with propagation delay. This spanning tree uses minimum number of multi-input gates.Path delay is the main 

concern for these prefix adders. 

http://www.ijesm.co.in/
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3.4 Sparse Kogge-Stoneadder: 

Enhancements to the original implementation include increasing the radix and sparsity of the 

adder. The radix of the adder refers to how many results from the previous level of computation 

are used to generate the next one. The original implementation uses radix-2, although it's possible 

to create radix-4 and higher. Doing so increases the power and delay of each stage, but reduces the 

number of required stages. The sparsity of the adder refers to how many carry bits are generated 

by the carry-tree. Generating every carry bit is called sparsity-1, whereas generating every other is 

sparsity-2 and every fourth is sparsity-4. The resulting carries are then used as the carry-in inputs 

for much shorter ripple carry adders or some other adder design, which generates the final sum 

bits. Increasing sparsity reduces the total needed computationand can reduce the amount of 

routing congestion stage this is how the reduction of stages is being done and then the final sum is 

being produced by operations performed by the combination.The delay reduction is done by 

reducing the number of stages such that the low delay and low power and area is being consumed 

such that the high speed is being obtained. 

The Sparse Kogge-Stone adder consists of several smaller ripple carry adders (RCAs) on its lower half and a 

carry tree on its upper half. Thus, the sparse Kogge-Stone adder terminates with RCAs. The number of carries 

generated is less in a Sparse Kogge- Stone adder compared to the regular Kogge-Stone adder. Sparse kogge-

stone adder is nothing but the enhancement of the kogge stone adder. The block in this sparse- kogge stone 

adder are similar to the kogge stone adder. In this sparse kogge stone, the reduction of number of stages is 

being done by reducing the generation and propagate units. The delay reduction is done by reducing the 

number of stages such that the low delay and low power and area is being consumed such that the high speed 

is being obtained. 

4. RESULTS 

Here the adders are implemented by Verilog using the software Xilinx and the timing delay of each adder is 

noted from the outputs obtained during the simulation. 

The output waveforms of 32-bit adders of all discussed types are as follows. 

 

http://www.ijesm.co.in/
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Fig 4 Output for 32-Bit BEC 

 

Fig 5 Output for 32-Bit kogge stone 

 

 

Fig 6 Output for 32-Bit Sparsekogge stone 
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Fig 7 Output for 32-Bit spanning tree 

 

 

 

 

 

 

 

 

 

 

 Table 1 Comparison Table Between Adders in terms of timing (delay) 

 

 

Fig 8 Output for 32-Bit Ladner-Fischer 

 

 

 

 

Type of Adder 

TIMING REPORT 

32-bit 64 bit 

BEC 36.876ns 25.489ns 

Kogge stone 24.399ns 19.016ns 

Sparsekogge stone 
40.177ns 26.111ns 

Spanning tree 26.421ns 

 

19.423ns 

Ladner-Fischer 30.548ns 

 

41.741ns 
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